- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001200001000000
- More
- Availability
-
04
- Author / Contributor
- Filter by Author / Creator
-
-
Zhou, Hangyu (4)
-
Bala, Kavita (3)
-
Hariharan, Bharath (3)
-
Kao, Chia-Hsiang (3)
-
Mall, Utkarsh (3)
-
Phoo, Cheng Perng (3)
-
Li, Qingzhong (1)
-
Scheiner, Steve (1)
-
Wang, Xin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 16, 2026
-
Zhou, Hangyu; Kao, Chia-Hsiang; Phoo, Cheng Perng; Mall, Utkarsh; Hariharan, Bharath; Bala, Kavita (, NeurIPS)Free, publicly-accessible full text available December 27, 2025
-
Zhou, Hangyu; Kao, Chia-Hsiang; Phoo, Cheng Perng; Mall, Utkarsh; Hariharan, Bharath; Bala, Kavita (, NeurIPS 2024)Clouds in satellite imagery pose a significant challenge for downstream applica- tions. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address this problem, we introduce the largest public dataset — AllClear for cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with diverse land-use patterns, comprising 4 million images in total. Each ROI includes complete temporal captures from the year 2022, with (1) multi-spectral optical im- agery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks and land cover maps. We validate the effectiveness of our dataset by benchmarking performance, demonstrating the scaling law — the PSNR rises from 28.47 to 33.87 with 30× more data, and conducting ablation studies on the temporal length and the importance of individual modalities. This dataset aims to provide comprehensive coverage of the Earth’s surface and promote better cloud removal results.more » « lessFree, publicly-accessible full text available December 13, 2025
-
Zhou, Hangyu; Kao, Chia-Hsiang; Phoo, Cheng Perng; Mall, Utkarsh; Hariharan, Bharath; Bala, Kavita (, NeurIPS)Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
